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A new schedule of reinforcement was used to maintain key-pecking by pigeons. The schedule
reinforced only pecks terminating interresponse times which occurred least often relative to
the exponential distribution of interresponse times to be expected from an ideal random
generator. Two schedule parameters were varied: (1) the rate constant of the controlling
exponential distribution and (2) the probability that a response would be reinforced, given
that it met the interresponse-time contingency. Response rate changed quickly and markedly
with changes in the rate constant; it changed only slightly with a fourfold change in the
reinforcement probability. The schedule produced stable rates and high intra- and inter-
subject reliability, yet interresponse time distributions were approximately exponential.
Such local interresponse time variability in the context of good overall control suggests that
the schedule may be used to generate stable, predictable, yet sensitive baseline rates. Impli-
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cations for the measurement of rate are discussed.

The rate with which an animal emits a
simple response can clearly show the effect
of stimulus and other variables upon be-
havior. But as a quantitative dependent vari-
able, rate is often disappointing. Rates under
a given schedule of positive reinforcement
tend to vary from subject to subject, and from
time to time. It is hard to reproduce a given
rate in a given subject, upon returning to a
given set of experimental conditions (e.g.,
Ferster and Skinner, 1957, p. 369, 370; Sidman,
1960, p. 253). Sometimes rate seems to be-
come insensitive to usually effective variables
(Sidman, 1960, pp. 176-ff).

Such difficulties suggest that standard sched-
ules do not control important factors affecting
response emission. One such factor is inter-
response dependence. When behavior is main-
tained by intermittent reinforcement, certain
interresponse times tend to become highly
probable, others infrequent. Patterns of suc-
cessive interresponse times may emerge. Stereo-
typed unrecorded behaviors probably play a
major role in mediating such dependencies.

'This research was supported in part by USPHS
grants MH-02456 and MH-08355. Mrs. Patricia Blough,
Miss Vicky Gray, Mr. Lloyd Marlowe, and Mr. Charles
Shimp contributed to the research by subject running,
computer programming, comment and criticism. Re-
prints may be obtained from the author, Walter S.
Hunter Laboratory of Psychology, Brown University,
Providence, Rhode Island 02912.

Interval schedules favor the growth of inter-
response dependencies by failing to control the
behavior that comes just before a reinforced
response, so that subjects tend to settle into
superstitious patterns of behavior (Skinner,
1948) that yield unpredictable rates and pat-
terns of response. Ratio schedules chain re-
sponse tightly, yielding short, uniform inter-
response times and insensitive rates. The dif-
ferential reinforcement of low rate specifically
favors interresponse dependence.

To the extent that responses are chained to
preceding responses or to unrecorded prior
behavior, stimulus or other variables may lose
control over response emission. The ideal be-
havioral baseline would appear to be one that
lacks such stereotypy, yet is statistically stable
and reproducible. The schedule of reinforce-
ment described here attempts to approximate
such a baseline.

Physical systems that emit responses ran-
domly in time have the desired characteristics.
Radioactive decay is a classic example: par-
ticles appear at random intervals, yet the over-
all rate of emission is statistically stable. An
ideal subject that behaved in this way would
generate an interresponse-time distribution
described by the exponential density function
(Equation 1):
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where \ represents mean rate and t represents
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the time between responses (Mueller, 1950;
McGill, 1963). The form of this function is
shown by the idealized raw data of Fig. 1
(“x” symbols). The form is simplified by the
logarithmic transformation, which yields a
straight line of negative slope equal to A, and
the interresponse-times per opportunities
transformation, which yields the constant A
(Fig. 1). These transformations are discussed
and used below.

The present schedule operates to force the
subject’s interresponse-time distribution to ap-
proximate the ideal form just described. It is
called “the reinforcement of least-frequent
interresponse times” or the “LF schedule”.
Briefly stated, it favors local interresponse time
variability by reinforcing unlikely interre-
sponse times. To regulate responding in this
way, responses must be continuously moni-
tored, and reinforcements designed to adjust
the interresponse-time distribution must be
fed back to the subject at appropriate times.
This was done by a LINC computer (Clark
and Molnar, 1964), provided through an eval-
uation program sponsored by the National
Institutes of Health.! This digital machine,
running on line, programmed reinforcements,
stored response data, and analyzed and dis-
played results. Most of the present graphs are
photographs of LINC oscilloscope displays.
Another application of the LINC to operant’
programming has already been described
(Weiss and Laties, 1965).

METHOD

Subjects

Three White Carneaux pigeons were main-
tained at approximately 759, of free-feeding
weight by supplementary feeding, if necessary,
after each experimental session. Two birds
had served in discrimination experiments in-
volving variable interval schedules for many
hours before this experiment. The third, 007,
had 2 hr of continuous reinforcement and
variable interval training before this study
commenced.

Apparatus

The birds worked simultaneously in three
standard Lehigh Valley pigeon chambers,
which were dark except for a white-lighted
response key. The switch on ‘each key closed
on application of about 14 g static pressure.
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A loudspeaker in the chamber supplied white
masking noise.

The LINC computer sensed closures of the
key switches. Acting on rules described below,
it programmed reinforcements and delivered
them via banks of output relays. The LINC
stored response data during a session and
wrote it on magnetic tape at the end of a
session. Subsequently, other stored programs
recalled the data, analyzed it, printed out the
results, and displayed them in graphic form
on an oscilloscope.

Procedure

The experiment ran daily (with three or
four exceptions) over a period of nine months.
Each daily session lasted 80 min. Pecks on the
response key produced occasional reinforce-
ment consisting of 3.3 sec access to mixed
grain. During reinforcement, the key light
went out and a light over the food magazine
came on. During a session, a bird might re-
ceive from 10 to 100 reinforcements, depend-
ing on program parameters in the following
schedule.

The schedule was designed to reinforce re-
sponses that terminated a given subject’s least
frequent interresponse time. To determine in-
terresponse time (IRT) frequency, it is neces-
sary to collect IRTs occurring over some finite
interval, or “IRT bin”. The size of this IRT
bin, and the point at which it falls on the IRT
continuum, will of course be crucial in deter-
mining how many IRTs will fall into the bin.
For most purposes—data analysis, for exam-
ple—these bins are of equal size. Each bin
might be a half-second long, so that responses
falling in the first half-second after a response
would go into the first bin, those in the second
half-second in the second bin, and so on.

The crucial element in the schedule is the
use of bins of varying size. As mentioned
above, a process emitting responses randomly
will generate an exponential distribution of
IRTs (equation 1, Fig. 1 and 2). With equal
bin sizes, the least frequent IRT would be
the longest. However, the bin sizes may be
adjusted in such a way that the ideal emitter,
responding at a constant mean rate, will drop
equal numbers of IRTs into each bin. This
adjustment can then represent the fact that,
for the ideal emitter, responses are equally
probable at any .moment—that their condi-
tional probability, estimated by frequency per
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opportunity (Anger, 1956) is constant. The
bins are therefore chosen so that for a given
mean rate \ they divide the area under the
exponential IRT curve into equal parts. Fig-
ure 2 illustrates this subdivision. Here, the
curve for A =14 has been marked off into 16
bins of equal area. The bin boundaries change
with A; for A =1 the curve falls more steeply
and the bins squeeze to the left, while for
A =1 the bins expand to the right.

Figure 2 also shows that the ideal curve used
to determine bin sizes does not start at IRT
=0, but at IRT = 0.8 sec. This was necessary
because real subjects have a. minimum IRT,
and very short IRTs appear to have special
characteristics, to be discussed later, that jus-
tify their exclusion here. The ideal IRT dis-
tribution thus becomes:

£(t) = Ae A(t-0.8) @

The IRT bins, determined for a given \
as illustrated in Fig. 2, controlled reinforce-
ment. They will be called “reinforcement
bins” to distinguish them from the conven-
tional equal-sized bins used in data analysis.
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Fig. 1. The “raw data” function (“x”) represents the
IRT distribution generated by an “ideal” subject
emitting responses independently at a constant mean
rate; the curve is exponential. The logarithmic trans-
formation of these data is a straight line, with slope
that varies with mean rate. The IRTs/OP transforma-
tion, defined in the text, indicates the conditional prob-
ability that a response will occur in any time bin; for
exponential data, this probability is constant. The
curves are arbitrarily displaced along the ordinate.
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To determine which response should be rein-
forced, the LINC classified each incoming
IRT into one of these reinforcement bins (or
discarded it, if it fell below 0.8 sec). The ma-
chine kept a record of the 150 most recent
classified IRTs from each bird2, and also re-
tained a running frequency distribution of
IRTs by reinforcement bin. The reinforce-
ment contingency for a given bird was reset at
the time of reinforcement, on the basis of the
IRT distribution at that moment. At this
time, the reinforcement bins were scanned
and the bin holding the fewest IRTs was se-
lected for subsequent reinforcement. (In the
case of ties, the bin corresponding to the
shorter IRT was chosen.) The bird received
reinforcement again only if it emitted an IRT
that fell within the limits of this bin.

A second independent variable, in addition
to A, governed reinforcement frequency. This,
the “probability of reinforcement” or Pr(Sr),
was included to reduce the number of rein-
forcements allowed by the IRT contingency
just described. When Pr(S7) = 1, all responses
meeting the IRT contingency were reinforced;
when Pr(Sr) = 14, about half of such responses

?This number varied from 64 to 152 during the early
phases of the experiment. The number of IRTs saved
was fixed at 150 during the seventh set of experimental
conditions listed in Table 1.

\
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Fig. 2. This indicates the way in which the IRT bins
used to compute reinforcement are derived from an
ideal exponential of given Ap. The area under the curve
is divided into 16 equal parts. The time interval
spanned by each of these segments becomes an IRT
bin. The rightmost bin has no upper bound. The ideal
subject would fill these bins equally; the real subject
puts fewer IRTs in some bins than in others. The
subject is reinforced for producing an IRT that falls
into the bin that contains the fewest IRTs. (Distribution
starts at 0.8 sec, to exclude “double pecks.” See text.)
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were reinforced, and so on. This probability
came into play each time a new IRT bin was
selected for reinforcement. At that time, the
computer used a random process to specify
into which range must fall the IRT preceding
the one potentially reinforced. With Pr(S7)
=1, this preceding IRT could fall into any
reinforcement bin. With Pr(S7) =14, the pre-
ceding IRT had to fall into either (at random)
one of the eight longer IRT bins, or one of
the eight shorter IRT bins. With Pr(Sr) =1,
the 16 reinforcement bins were split into four
groups of four; the preceding IRT had to fall
into one of these groups, selected at random.

This complex way of reducing reinforce-
ment frequency was adopted to realize a po-
tential extra push toward IRT variability. It
favored random sequences of IRTs, where the
basic reinforcement contingency only favored
widely distributed values of IRT.

Four details of the reinforcement procedure
remain. (a) The first response after reinforce-
ment does not define an IRT in the usual
sense, since eating time intervenes between
responses. The IRTs for such responses were
not determined and did not enter any IRT
distribution involved in the experiment. Con-
sequently, the first response after reinforce-
ment never produced reinforcement. (b) When
Pr(Sr) was reduced to 1, long periods could
elapse between reinforcements, so long, in
fact, that birds might begin to extinguish.
Hence, the following additional rule: if 20
min elapsed since a bird’s last reinforcement,
Pr(S7) automatically became equal to 1; when
a reinforcement occurred, Pr(Sr) reverted to its
programmed value. In practice, this seldom
happened. (c) As mentioned above, responses
defining IRTs of less than 0.8 sec were never
reinforced. It might have been possible, how-
ever, for such responses to be maintained
superstitiously. If, for example, the bird fre-
quently emitted double pecks, the first mem-
ber of a pair could trigger reinforcement, and
the second member might still be emitted be-
fore the bird began to feed. For this reason, if
reinforcement was in progress when an IRT
of less than 0.8 sec occurred, reinforcement
stopped immediately. (d) At the start of a ses-
sion, the IRT bin to be reinforced was deter-
mined from the IRT distribution carried over
from the previous session. Thus, with regard to
reinforcement contingencies, the birds worked,
in effect, in one long, continuous session.
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The data presented here were accumulated
during the last 714 months of experimenta-
tion. During this period, A varied from 1 to
2, and probability of reinforcement Pr(Sr)
varied between 14 and 1. One or both para-
meters were changed when the birds had ap-
peared to reach a stable level of responding
under the preceding conditions. Table 1 shows
the order in which these conditions were pre-
sented and the number of consecutive sessions
under each condition. As the experiment

Table 1

Order of Experimental Conditions and the Number of
Consecutive Sessions on Each (A\p = programmed rate in
responses per sec, Pr(S*) = probability-of reinforcement)

Consecutive

AP Pr(§7) Days
1% 1 6
% % 10

1 % 18

1 Y 10

1 1 11
% 1 8,* 11
kA Y 13
Y 1% 18
Y% Y 15

2 1% 16
% 1 15
Ya Y% 19

1 1 12
Y% Ya 13

1 Y 14
Y% 1 14

*By accident, one session at Ap =1 and Pr(§) =1 was
run on day 9.

progressed, it became clear that Pr(Sr) had
relatively small effects. Hence, when replicat-
ing conditions, only the extreme values, Pr(Sr)
=1 and Pr(S7) =1, were repeated. In con-
sidering the data, only these values are men-
tioned. The “first experimental series” refers
to the first application of these values, paired
with the various A. The “second experimental
series” refers to the replication of these con-
ditions, which, it will be noted, came in a
different order the second time around.

Definitions

Four variables, two of them already men-
tioned, are symbolized in the remainder of this
paper. For convenience, they are defined here.

Ap—Programmed lambda, an independent
variable. It may be interpreted as the rate in
responses per second of an ideal subject emit-
ting responses randomly in time. However, as
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may be seen from Fig. 2 and equation 2, Ap
refers to the rate with which responses occur,
given that 0.8 sec has elapsed since the pre-
ceding response. In effect, time starts at 0.8
sec on the IRT continuum, and responses oc-
curring within the 0.8-sec interval are not
counted. (See also the definition of Ao below,
and footnote 3.)

Pr(S")—Probability of reinforcement, an in-
dependent variable. Given that an IRT falls
into the reinforcement bin with the fewest
IRTs, the corresponding response will always
be reinforced if Pr(S) =1, it will go unrein-
forced about one-half of the time for Pr(Sr)
=14, and so on. For details, see above.

Ao = Obtained lambda, a dependent vari-
able. A subject’s rate, over an 80-min session,
in responses per second, with the same omis-
sions of time and responses described for Ap.
Since rapid multiple pecks count as single
responses, Ap reflects the same information as
responses per second, with the contribution
from double pecks and bursts sifted out.3

IRTs|OP—Interresponse-times per oppor-
tunity, a dependent variable. This is a trans-
formation of a raw interresponse-time dis-
tribution. It estimates the conditional proba-
bility that a response will occur within a given
time interval (say, from 3.0 to 3.5 sec) after a re-
sponse. When applied to idealized random
data, the transformation yields a horizontal
straight line (Fig. 1), indicating that the prob-
ability of response is independent of IRT.
The method of calculating IRTs/OP, as well
as other peculiarities of the transformation,
are discussed by Anger (1956).

RESULTS AND DISCUSSION

Response Rate

Cumaulative records. Figure 3 shows cumu-
lative records from the last day on each set of
conditions in the second replication series.
The curves are grouped in triplets, one curve
from each bird. The first 2047 responses of the

3An example will illustrate the difference between
ordinary response rate and )o. Suppose that four pecks
come 0.4 sec apart, so that a total of 1.2 sec elapses from
the first to the fourth. This group of pecks counts as a
single response in the computation of \o. In effect, the
response lasts from the first peck until 0.8 sec after the
fourth, for a total of 1.2 + 0.8 =2 sec. Since this 2-sec
interval is not available for responses that count toward
Mo, it is subtracted from the time used to compute )o.
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session contribute to each curve, except where
the total for the session was less than this. The
cumulative records are not continuous; each
successive point adds to the cumulative total
the responses emitted in 20 sec. A dot appears
next to the curve if one or more reinforce-
ments were delivered during the associated
20-sec interval.

Figure 3 illustrates that the LF schedule
generated a relatively stable rate within a ses-
sion. The slope of the curves varies with Ap,
but not noticeably with Pr(Sr). The cumula-
tive records from different birds and different
sessions were generally quite similar, although,
as Fig. 3 suggests, variable performance some-
times accompanied the lowest rates of rein-
forcement.

Mean rate as a function of \p and Pr(Sr).
It has been shown that programmed lambda,
Ap, may be interpreted as the average rate
of an ideal subject, while obtained lambda,
Ao, represents the average rate of a real sub-
ject. Table 2 indicates the relation between
these variables, together with the effect of
Pr(SY). The data from the three birds are
similar. They indicate that Ao varies sub-
stantially with Ap, but little with Pr(Sr). For
Ap=1, Mo is close to 1; for lower Ap,
Ao is somewhat higher than Ap. In each case

30 MIN

=1 X=1 A=Y
Fig. 3. Cumulative response records from the last
day on each \p and Pr () combination in the second
series. In each triplet of curves, the leftmost is from
bird 007, the center from 593, the rightmost from 812.
Curves in the top row all come from sessions with
Pr(S7) = 1; the bottom row from sessions with Pr(S7) = %.
The curves are discontinuous, each point representing
cumulation over an additional 20 sec. Reinforcement is

indicated by a point next to the curve.
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but one, Pr(Sr) = 1 is associated with a slightly
higher Ao than is Pr(S§7) =14. (This difference
is significant at the 59, level by a sign test).

Table 2

Adjusted Response Rate Xo In Responses Per Second
As a Function of Programmed Rate Ap and Probability
of Reinforcement Pr(S¥)

(Means over the last six days of each condition, includ-
ing both experimental series)

Bird

P Pr(s7) 007 593 812
Ya 35 .30 .36

25
1 34 .35 .39
Y .53 .56 .59

.50
1 .60 .60 .64
Y .89 1.01 1.02

1.0

1 1.02 1.03 1.13

Rate across sessions. Figure 4 shows the ob-
served rate, Ao, plotted for each bird over the
last 84 sessions (the entire second experimental
series). Pairs of numbers accompany each sec-
tion of the graph; the top number is Ap,
the bottom Pr(S7). Points cluster at about the
same level for a given Ap, regardless of Pr(Sr).
However, there is somewhat more intra- and
interbird variability at the lower Pr(Sr). With
changing Ap rate usually changed abruptly on
the first day, followed by smaller adjustments
over one or more subsequent sessions.

IRT distributions. Figure 5 summarizes
IRT data by bird (rows), by Pr(Sr) (columns),
by replication series (x and o symbols in each

BIRDS | 1/2 1 /4
é:gg; .' 174 | 1/4 /l
[3] 2 o T 812 v@ @, ' 4
w d f,‘ ] ] f
L0s 76 = L. ,-"’.'-..’
§opam e | Ro%
ot 1/2 oo ‘.:1 = £
: [ Y
0

LAST 84 SESSIONS

Fig. 4. Response rate, given by obtained lambda (\o)
over the last 84 experimental sessions. Each segment of
the curve is labeled with the values of the independent
variables associated with that segment. In each pair, the
programmed rate \p is on top, and the probability of
reinforcement Pr(S*) below.
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graph), and by Ap (three curves in each graph).
These data are means from the last six ses-
sions on a given set of conditions. The loga-
rithmic ordinate makes it relatively easy to
compare each curve with others and with the
ideal exponential, which would be a straight
line on these coordinates (Fig. 1).

All of the functions in Fig. 5 conform at
least roughly to the straight line representing
an exponential function. The consistent ex-
ception to this rule concerns responses falling
in the first and second half-second bins. The
level of these is quite variable and generally
falls below the straight line described by the
remainder of the data. (These short IRTs are
discussed further below). The slope of the
functions changes markedly with Ap, but the
different Pr(St) values (left and right cols.)
have no clear effect.

Figure 5 indicates that considerable confi-
dence can be placed in the form of the IRT
data. Comparison of the rows shows that the
three birds gave generally comparable results.
A comparison of “x” with “0” curves in each
plot shows that a given set of conditions gave
about the same result each time it was used,
despite the different order of conditions in
the two series.

IRTs[OP beyond 1 sec. The comparability
of  the various sets of IRT data (Fig. 5)
prompts the averaging of IRTs/OP functions
to increase the visibility of any trends they
may reveal. Figure 6 shows averages of these
functions over all birds and both experimental
series. Omitted from these functions are points
for IRT: of less than 1 sec and points from the
tails of the distributions where the average in-
cluded quotients with zero denominators.

As in Fig. 5, the most striking feature of the
IRTs/OP curves is the separation of functions
for the different Ap values. The functions as-
sociated with Pr(S*) =1 are roughly constant,
except for higher values in the 1-2-sec IRT
range. With increasing IRT, IRTs/OP asso-
ciated with Pr(S) =14, tend to fall below
those for the higher reinforcement proba-
bility. The raw data reveal that this difference
was due largely to the fact that many more
very long IRTs (greater than 10.5 sec) oc-
curred at the lower Pr(S7). This is consistent
with the slightly lower Ao values associated
with Pr(S7) =14 (Table 2). It may be tenta-
tively concluded that fewer reinforcements
increase the number of very long IRTs some-
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Fig. 5. Mean IRTs over the last six sessions under each experimental condition. Means appear for 12 sets
of sessions, two sets for each of the following combinations of independent variables: Pr(S®)=1, with zp=1,
Y%, and %; Pr(S") =%, with x\p =1, %, and %. The three curves in each graph correspond to the three Ap values,
from left to right: 1, %, %. The curve for Ap =% has been displaced to the right five units; for Ap =%, 10 units.
To avoid confusing overlap, the catch-all IRT bin for IRT greater than 10.5 sec has been omitted from the

graphs.
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what, but do not markedly affect the IRT
distribution when the bird is active.

An apparently minor feature of the pro-
cedure may have contributed to the rela-
tively high IRTs/OP values at short IRT. As
described earlier, reinforcement was set up
for responses falling into the low IRT bin. A
sampling of the data indicated, however, that
from 109, to 259, of the time, two or more
bins were tied for low. In such cases, the com-
puter always chose the shorter IRT bin for
reinforcement. This set a bias in favor of short
IRTs that may have been reflected in the
IRTs/OP curves.

IRTs[OP at short IRT. Blough (1963) sug-
gests that the pigeon’s short IRTs have a
special character that justifies their separate
treatment. The present study supports this
view. Figure 7 provides the basis for this state-
ment. In it appear plots of IRTs/OP by 0.1-
sec bins for the three birds during the first 2
sec after the preceding response. These curves
differ in two ways from the data so far dis-
cussed: they show large individual differences
among subjects at IRTs less than about 0.7 sec,
and-they indicate that Ap has little or no effect
on response probability in this region. IRT
data across series (cf. Fig. 5) indicate that re-
sponse probability in this short IRT region
shows the largest session-to-session variability.
Such IRTs showed no sign of diminishing,
though responses terminating IRTs of less
than 0.8 sec were never reinforced.
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Fig. 6. Mean IRTs/OP over the last six days of each
condition, of both experimental series, computed for
half-second IRT bins. Points below 1 sec are missing
(cf. Fig. 7); long IRT points are missing where their
meaning is questionable because few responses con-
tributed to them.
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It appears that these short IRT responses
are patterned in a stereotyped way peculiar
to the subject. They are perhaps best con-
sidered as part of the pigeon’s response to-
pography, the double peck being simply a
variant of the peck. They would seem worthy
of little attention, were it not for the fact that
they constitute a very large proportion of
some birds’ recorded output, and appear to
change their proportion as response topog-
raphy drifts. Thus, these annoying extra pecks
may considerably increase variability across
subjects and from time to time.

Figure 7 suggests further that this response
stereotypy has effects extending to IRTs as
great as 2 sec. For example, a damped oscilla-
tion with a period of about 0.4 sec is evident
in the data of bird 593, with progressively less
marked IRTs/OP peaks at 0.4, 0.8, 1.2, and
1.6 sec. As Blough (1963) noted, such periodic-
ity is probably due to a basic IRT of 0.4 sec,
the longer peaks resulting from abortive re-
sponses that fail to operate the response key.
Whatever their cause, such periodicity inter-
feres with the operation of the schedule, which
does not take into account this factor in allo-
cating reinforcements within the short IRT
period. It was primarily this situation that
prompted adoption of the 0.8-sec dead time
after each response, within which no reinforce-
ments were given.

If very short IRTs are indeed the result of
special topography, they may be controllable
by careful key training. Even without them,
the short-IRT region presents a problem for
the schedule. Real subjects can never ap-
proach the ideal emitter here, since they re:
quire a finite minimum IRT. This minimum
surely varies, so the assumption of the present
schedule, that the bird becomes active at ex-
actly 0.8 sec, is at best a gross simplification.
The situation might be handled by adjusting
reinforcement bin sizes in the short IRT re-
gion to take account of rising response proba-
bility there. The data of bird 812, a bird with
clean topography and few double pecks, may
suggest the sort of distribution to be taken
into account (Fig. 7).

Reinforcement Distributions

Anger (1956) suggested that the conditional
probability of response in a given IRT bin
(estimated by IRTs/OP) is proportional to the
relative number of reinforcements per unit
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time delivered in that bin. On this hypothesis,
a constant conditional probability across IRT
bins should be accompanied by a constant
number of reinforcements per bin. The LF
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schedule was intended to yield a constant con-
ditional probability, and it succeeded to the
extent shown in Fig. 6. Therefore, reinforce:
ments per bin might be expected to be ap-
proximately constant.

Figure 8 shows distribution of reinforce-
ments, combined across birds, for the last six
days of the various conditions in the second
experimental series. (Bear in mind that the
program prohibited reinforcements for IRTs
less than 0.8 sec). The curves for Ap =1 de-
part most strikingly from the horizontal
straight line that would indicate constancy
across bins. The steeply falling curve here is
more compatible with the rule that thc num-
ber of responses in a given bin, not the condi-
tional probability of response, is proportional
to the number of reinforcements in that bin.
This rule was rejected by Anger, and further
evidence against it has since appeared (Ca-
tania, 1962; Herrnstein, 1964). For A =14 and
14, the reinforcement distributions are not
proportional to responses, yet they do not
achieve the constancy required by Anger’s
rule.

The variability in the reinforcement distri-
bution data is large, but the data suggest that
no simple rule, such as “equal reinforcement
per IRT” or “equal reinforcement per re-
sponse” applies under all conditions. They
suggest rather, that the pigeon’s rate is not
governed entirely by reinforced IRT, power-
ful as this factor appears to be. To force a bird
to high rates (many short IRTs), it may be
necessary to reinforce short IRTs heavily; to
force a bird to slow down, long IRTs must be
heavily weighted.

Interresponse Dependence

Even had the present subjects generated
purely exponential IRT distributions, it
could not be argued that their responses were
independently emitted. The latter' implies
the former, but not the reverse. Additional
tests of sequential ordering of IRTs are neces-
sary. The last 150 IRTs (omitting those
shorter than 0.8 sec) were retained from each
experimental session in the second experi-
mental series, and two simple tests of serial
dependence were run on these samples. The
first was a runs test (Dixon and Massey, 1952).
IRTs were dichotomized into short and long
and the number of runs in the resulting se-
quence was computed. This statistic was com-

DONALD §. BLOUGH

pared with the number of runs to be expected
on the basis of IRT independence. Of 108
samples tested, 24 had too few runs (signifi-
cant at the 59, level or better) while three had
too many runs. Eighteen of the series with too
few runs were from one bird, 812.

In this analysis, too few runs indicates ex-
cessive repetition of IRTs, long following
long, short following short. Unfortunately, it
reveals no more about the patterning of the
runs. In scanning the data, no particular pat-
terning was detected.

The second test was a chi-square analysis
of data from the last six days on each experi-
mental condition. For this analysis, each pair
of IRTs in a sequence was categorized into a
two by two table: short-short, short-long, long-
short, long-long. Of chi-squares from 30 such
tables, 12 proved significant at the 59, level
or better. This result confirmed the runs tests,
indicating some degree of serial dependence
expressed as repeated long or short IRTs.

Though interresponse dependence did not
appear to play a major role in this study, its
presence constitutes response control that may
be undesirable. More might be done to con-
trol it by basing reinforcement upon IRT se-
quence in addition to current IRT, the tactic
used to a minor extent in the present study,
when Pr(S7) was reduced (see Procedure).

Uses and Implications of the LF Schedule

The LF schedule largely achieved its main
purpose: control of mean rate while diversify-
ing local behavior. Changes in the rate constant
Ap altered response rate rapidly, precisely,
and reliably enough that an experimenter
may use the schedule to generate approxi-
mately the rate desired, at least within the
range tested here. Thus, the schedule appears
useful where a predictable non-stereotyped
rate baseline is required, given that this base-
line is not itself supposed to be sensitive to
independent variables. Two examples may
clarify such applications. (1) The LF schedule
is currently being used in a steady-state dis-
crimination experiment. It maintains stable
responding to a discriminative stimulus, while
responding to other stimuli varies. (2) The
schedule might maintain behavior to one key
in a two-key situation, where responding to
the second key was of interest. For example,
one might test the implications of quantitative
formulations involving relative response and
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reinforcement rates (e.g., Catania, 1962) since
the schedule permits independent control of
these two variables.

It would not be appropriate to use the
schedule in its present form to study the ef-
fects of variables (e.g., punishment, depriva-
tion) upon responses that were directly under
schedule control. The schedule opposes rate
changes, like the governor of an engine; it
successfully opposed the effect of a large
change in the probability of reinforcement
(assuming that such a change might otherwise
have been effective). Probably variants of the
LF schedule could be devised that would
make it useful for such purposes. For ex-
ample, the programmed rate constant Ap
might be put under the subject’s control, let-
ting it drift upward if presure toward a higher
rate developed (too many short IRTs) and
downward if the subject tended to slow down.
As in other systems involving feedback, such
a procedure could lead to a stable equilib-
rium, oscillation, or a flight to one extreme
(extinction) or the other (maximum rate). The
outcome would no doubt depend upon the
details of the feedback procedure.

The present study adds weight to the al-
ready large body of evidence (c.f. Ferster and
Skinner, 1957) that behavior at the time of
reinforcement powerfully determines the per-
formance generated by a schedule. The results
do not imply, however, that reinforced inter-
response time is the only effective variable con-
trolling the performance. The effectiveness.of
this variable was abnormally enhanced in the
present study because it was specifically used
to oppose the effects of other variables. Yet,
while granting that other variables may con-
trol response emission, one should always be
careful to examine the possibility (as did
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Anger, 1956) that a variable gains part or all
of its effect indirectly, by governing the distri-
bution of reinforced interresponse times.
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